当前位置:首页 >生活百科 > 正文

如何证明函数可导

2024-09-16 10:28:52

首先,函数的定义是给定一个数集A,假设其中的元素为x。现对A中的元素x施加对应法则f,记作f(x),得到另一数集B。假设B中的元素为y。则y与x之间的等量关系可以用y=f(x)表示。函数的条件是在定义域内,必须是连续的.可导函数都是连续的,但是连续函数不一定是可导函数。也就是说在每一个点上导数的左右极限都相等的函数是可导函数,反之不是。从画起图来看,两条函数线都是没有断开的,光滑的,没有棱角的,就是可导函数.连续但是不可导的函数那种线虽然从头到尾连着,但是不光滑,是有棱角的。

猜你喜欢

猜你喜欢
热门推荐