反常积分敛散性判别
2024-09-21 10:15:52
反常积分的敛散判断本质上是极限的存在性与无穷小或无穷大的比阶问题。
两类反常积分的收敛尺度:对第一类无穷限而言,当x趋近于正无穷时,f(x)必为无穷小,并且无穷小的阶次不能低于某一尺度,才能保证收敛;对第二类无界函数而言,当x趋近于a加时,f(x)必为无穷大。且无穷小的阶次不能高于某一尺度,才能保证收敛;这个尺度值一般等于1,注意识别反常积分。
- 上一篇:反刍打一成语
- 下一篇:反不正当竞争法中的经营者是指
猜你喜欢
-
朋友圈主页三个点在哪里
阅读量:94 -
烧丝瓜怎么烧好吃
阅读量:71 -
苹果怎么设置来电图片背景
阅读量:6 -
白醋泡手的正确方法一天几次
阅读量:90 -
苹果11怎么用不了搜狗输入法
阅读量:31 -
抖音如何拍的时间长一点
阅读量:63 -
苹果怎么发闪照
阅读量:92 -
正确的煮虾方法和时间
阅读量:54 -
藤席的清洗及保养方法
阅读量:48 -
虾的几种家常做法
阅读量:11
猜你喜欢
-
阅读量:47
-
阅读量:49
-
阅读量:25
-
阅读量:22
-
阅读量:48
-
阅读量:95
-
阅读量:82
-
阅读量:5
-
阅读量:77
-
阅读量:13